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Abstract

Tests were conducted in the Icing Research
Tunnel (IRT) at the NASA Lewis Research Center to
document the repeatability of the ice shape over the

range of temperatures varying from -15°F to 28°F.
Measurements of drag increase due to the ice
accretion were also made. The ice shape and drag
coefficient data, with varying total temperatures at
two different airspeeds, were compared with the
computational predictions. The calculations were
made with the 2D LEWICE/IBL code which is a
combined code of LEWICE and the interactive
boundary layer method developed for iced airfoils.
Comparisons show good agreement with the
experimental data in ice shapes. The calculations
show the ability of the code to predict drag increases
as the ice shape changes from a rime shape to a glaze
shape.

Intr ion

Over the past few years, -the Icing Research
Tunnel (IRT) at the NASA Lewis Research Center
has gone through several rehabilitations which have
improved its capabilities in simulating real icing
conditions. Some of the improvements include a new
and more powerful fan motor, a new spray bar
system, a new digital control system, and various
improvements to the IRT structure. As a result, the
IRT can now provide more accurate control of the
airspeed and temperature, more uniform clouds
covering a larger cross-section of the test section,
and lower liquid water content.

Although various test programs have been
conducted in the IRT with the improved capabilities,
there has not been a comprehensive test program to
document the repeatability of the data obtained in the
IRT. Tests were conducted to address the
repeatability issue during the months of June and
July of 1991. The test matrix was focused to
document the repeatability of the ice shape over a
range of air temperatures. During the tests, the drag
increase due to the ice accretion was also measured.
This test program also provided a new database for
code validation work.

The LEWICE code, which is being used by
industry and government to predict two-dimensional
ice accretions, was combined with the interactive
boundary layer method to also predict the resulting
aerodynamic penalties! (This combined code is

referred to as the 2D LEWICE/IBL code.). An initial
validation study? was made last year, in which the
code predictions were compared with the
experimental results of Olsen, et al.3 The results
showed good agreement between the experiment and
the calculation for both ice shapes and the resulting
drag. More comparisons of calculations with
experimental data were recommended and the recent
repeatability test provided a needed data set.

In this paper, comparisons of measured ice
shapes and predicted ice shapes are presented for a
range of temperatures with two different airspeeds
and liquid water contents. Resulting drag increase is
also compared between the experiment and the
calculation.

Nomenclature

A damping-length constant

¢ airfoil chord

Cy4 drag coefficient

ks equivalent sand-grain roughness
k
L

dimensionless sand-grain roughness
mixing length

Tt total air temperature

Ts static air temperature

ug friction velocity

V.. airspeed

X surface coordinate

y coordinate perpendicular to x

yt aReynolds number, y ur /v

X universal constant, also used as a sweep
parameter

v kinematic viscosity

Description of the Experiment

Icing Research Tunnel

The NASA Lewis Icing Research Tunnel is a
closed-loop refrigerated wind tunnel. Its test section
is 6 ft. high, 9 ft. wide, and 20 ft. long. A 5000 hp
fan provides airspeeds up to 300 mph in the test
section. The 21,000 ton capacity refrigeration can

control the total temperature from -40°F to 30°F.
The spray nozzles provide droplet sizes from

approximately 10 to 40 pm median volume droplet
diameters (MVD) with liquid water contents (LWC)

ranging from 0.2 to 3.0 g/m>. A schematic of the
tunnel, shop, and control room is shown in Fig.1. A
detailed description of the IRT can be found in
reference 4.

Test Model

The test model was a 6 ft. span, 21 in. chord
NACA 0012 airfoil with a fiberglass skin. The model
was mounted vertically in the center of the test
section. During all icing runs, the model was set at

4° of angle of attack. The model installed in the test
section is shown in Fig.2.

Test Conditi

The test points used to make comparisons with
the calculation in this paper were selected from the
larger test matrix which is fully described in
reference 5.



The test conditions given in Table 1 can be
grouped into two: 1) low airspeed and high LWC,
and 2) high airspeed and low LWC. Water droplet
size was held constant for both groups. Airspeed,
LWC, and spray time were selected so that both
groups would have the same water intercept (i.e.

airspeed x LWC x spray time = constant). Temperatures
were selected to cover glaze, rime, and transition
regimes.

Test Methods

A typical test procedure for icing runs is listed
below.

The model angle of attack was set.

The target airspeed and total temperature were
set.

The spray system was adjusted to the desired
MVD and LWC.

The spray system was turned on for the desired
spray time.

The tunnel was brought down to idle and the frost
beyond the ice accretion was removed.

The wake survey was traversed across the airfoil
wake with the tunnel at the target airspeed.

The tunnel was brought down to idle again for ice
shape tracings and photographs.

. The airfoil was then cleaned and the next data
point was performed.

Drag Wake Survey

The section drag at the mid-span Of the airfoil
was calculated from total pressure profiles measured
by a pitot-static wake survey probe. The wake
survey probe was positioned two chord lengths
downstream of the airfoil as shown in Fig.2. The
wake surveys were made only when the spray cloud
was turned off. During sprays, the probe was kept
behind a shield to prevent any ice accretion on:the
tip of the probe. The wake probe was mounted on an
automatic traverse system, and the traversing speed
was adjustable.
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ription of 2D LEW IBL

LEWICE is a two-dimensional ice accretion code
which has a Hess-Smith two-dimensional panel code
for a flow calculation, a droplet trajectory and
impingement calculation code, and an icing
thermodynamic code. Detailed description of the
code can be found in reference 6.

Several modifications have been made to the
original LEWICE code to add a capability of
calculating aerodynamic characteristics by making
use of the interactive boundary layer method
developed by Cebeci, et al’. Along with this new
capability, a modification was made to the original
LEWICE so that the calculation can be made in a
user interaction-free environment. This was achieved
by using a smoothing routine! to avoid the
occurrence of multiple stagnation points caused by
the formation of irregular ice surfaces on the ice
shape.

During the development of the 2D LEWICE/IBL
code, a turbulence model has also been developed to
deal with surface roughness such as that associated
with ice. This was done by modifying the mixing
length and wall-damping expression of the Cebeci-
Smith model, that is

L=x(y+ay){l-ep[-(y+A4y)/A]} (1)

where Ay is a function of an equivalent sand grain
roughness k. In terms of dimensionless quantities,

with ki = ks ug /v and Ay* = Ay ug /v

0.9[/kf — kexp(~k}16)] S< k<70
Ay* =

0.7(k})°-38 70 < k<2000

()]

The equivalent sand grain roughness for ice is
determined from the expressions used in the original
LEWICE code.

The heat transfer model used in the LEWICE
code makes use of an equivalent sand grain
roughness, ks, expressed as a function of LWC,

static air temperature (Ts), and airspeed ( V. ).

The original expression for kg is in the following
form with ¢ denoting the airfoil chord and (ks/c)base
=0.001177

ks/c ks/c k;/c
ks = [——— g g
ot e T tenme ™ KR T o
.( % Yoase-C 3

where each sand grain roughness parameter is given
by

L
(e T °

= 0.5714 + 0.2457(LWC ) + 1.2571(LWC )? (4)

(5l = 0.047T, - 11.27

(k. /c)base (5)
[——f’—/c—']v_ = 0.4286 + 0.0044139 V.,

(k,/C )ba.re (6)

Recent numerical studies conducted by Shin, et
al.2 showed that the equivalent sand grain roughness
did not depend on airspeed, but did depend on the
median volume diameter (MVD) of the water
droplets. As a result, equation (3) is modified, as
given by equation (7).

k. /c ks ilc

T e

k, = 0.6839 [ Ir,

k,/c ks
e -{ — Dbase:C
[(k:/C)ba.u JMVD ¢ ; (7)

where
1 MVD £ 20
k/c

[( k,/C )ba.u ]MVD

1.667-0.0333 MVD MVD > 20 (8)



The interactive boundary layer method then uses a
roughness parameter as given in equation (9) over
the predicted iced surface.

(ks)IBL = 2(ks)equation (7) )

Present studies as well as those conducted in
reference 2 showed that drag coefficients calculated
with the roughness parameter by the above method
were much lower than measured drag coefficients,
especially for rime ice shapes. Numerical studies
were conducted to investigate the effect of the extent
of the iced airfoil surface on drag. In the original
version of the 2D LEWICE/IBL code, roughness is
only applied over the surface of the ice. The code
was modified to allow for roughness on both the ice
and the airfoil surface downstream of the ice. The
results showed that agreement between calculated
and measured drag coefficients for rime ice shapes
became much better by extending the range of the
roughness on the airfoil surface and placing a lower
limit of kg/c = 0.002 on the equivalent sand grain
roughness, which otherwise would become very
small for rime ice. The extent of the iced airfoil
surface which resulted in the best agreement with the
experimental drag coefficients for rime ice shapes
was found to be 50 percent of the airfoil chord, and
this extent was wused in all drag calculations
presented in this paper.

Its and Di

This section contains a discussion of the quality
of the experimental data, and discussions of the ice
shape comparison and the iced airfoil drag
comparison.

Ouality of Experi 1D

- Section drag was measured
with the clean airfoil under the dry condition and the
results are compared with the published data3.8.9 as
shown in Fig.3. The data of Abbott and Doenhoff8
was taken in the Low Turbulence Pressure Tunnel
(LTPT) at the NASA Langley Research Center. The
data of Olsen, et al.3 and the data of Blaha and
Evanich? were taken in the IRT.

The difference between the data from the LTPT
and the IRT <can occur for several reasons:
differences in wake survey nmethod, tunnel
turbulence level, and model condition. The LTPT
tests used a wake rake while the IRT tests used a
traversing probe. The LTPT had the freestream
turbulence intensity of the order of a few hundredths
of 1 percent. The freestream turbulence intensity in
the IRT is about 0.5 percent. The difference in the
surface finish of a model can also have an effect on
drag.

The current IRT drag data is higher than the
previous IRT data. All three tests used the wake
survey method and the airfoils had the same chord
length. This kind of difference in drag data can come
from differences in the wake survey location and
model condition. The wake survey probe was located
at one chord length behind the model for Blaha's test
while it was located at two chord lengths behind the
model for Olsen's test and the current test. The
leading edge and the trailing edge part of the current
model were joined at the maximum thickness location
(30 percent of the chord) while the model used in
both reference 3 and 9 was the same one-piece

airfoil.

According to the experimental results of Gregory
and O'Reilly!0 shown in Fig.4, transition occurs at
around 40 percent chord at 0° of angle of attack for
an NACA 0012 airfoil at a Reynolds number of 3
million. The transition location moves upstream very
rapidly as the angle of attack increases. A small step
at the joint in the current model may have acted as a
trip at low angles of attack causing an early
transition to turbulent boundary layer. At higher
angles of attack, the step may have acted as an
additional roughness source in the turbulent
boundary layer, which increased drag.

Drag associated with an iced airfoil is normally
dominated by the pressure drag due to a large

separation caused by a pressure spike at the upper

horn. At 4° of angle of attack, where all the icing
runs were made, an increase of the friction drag by
the step of the current model is believed to have a
minimal effect on icing drag data.

Repeatability of dry airfoil drag measurements -
Dry runs were made prior to each icing run. Each
icing run was repeated at least twice, which resulted
in more than 28 dry airfoil drag measurements at a

4° angle of attack. The percent variation was
calculated in the same way as Olsen3 by taking the
standard deviation and dividing it by the average.
The average Cq4 value at a 4° angle of attack was
0.01068. The percent variation was 7.1 percent of
the average value. The percent variation reported by
Olsen was 7.7 percent.

Repeatability of the ice shapes and resulting drag

- Each data point was repeated at least twice to
ensure repeatability of the ice shape and drag
measurement. Ice shapes and nmeasured drag
coefficients of three repeat runs for typical glaze ice
(22°F) and rime ice (-15°F) cases at two airspeeds
are shown in Figs. 5 and 6.

At all four conditions, the ice shape repeats well
and the variation of the drag coefficient is within the
percent variation of the measurement. The larger
percent variation is seen with glaze ice, however the
variation is much smaller than that reported in
Olsen3.

Comparison Between Calculated and Measured Ice

Shapes

Ice shapes were computed with the 2D
LEWICE/IBL code for the icing conditions shown in
Table 1. Since the code runs without any user
interactions, the only variable which can influence
the ice shape for a given icing condition is the time
step. Previous investigation? suggested that the use

of 1 minute time interval resulted in the best"

agreement with the experimental ice shapes.

To ensure the above finding still holds true, the
effect of time step was investigated with all icing
conditions at the airspeed of 150 mph. Four different
time intervals, 0.5, 1, 2, and 6 minutes, were used.
Figure 7 shows the results for a glaze ice, a rime
ice, and a transition case. The use of a longer time
interval results in more ice accretion as seen in all
cases. Based on the comparison with the
experimental data, 1 min time step was chosen for all
the calculations. '




Figure 8 shows calculated and measured ice
shapes at various temperatures. The experimental ice
shape changes from white, opaque rime ice to
slushy, clear glaze ice with increased temperature.
Airspeed was set at 150 mph. Experimental ice
shapes were taken at the mid-span of the model
where the wake survey was made. The agreement
between calculated and measured ice shapes is good,
particularly for rime ice cases. Icing limits are

predicted well for the temperatures below 18°F. At
warmer temperatures, the calculation predicted more
run back which resulted in more ice accretion beyond
the experimental icing limits. The direction of horn
growth is predicted reasonably well, but in general
the size of the predicted ice shape is larger than the
measured shape.

Figure 9 shows ice shape comparison as a
function of temperature at the airspeed of 230 mph.
Comparisons show similar results as the lower speed

~ cases. Good agreement is shown at all temperatures

except at 28°F where an overprediction of upper
horn is seen.

Comparison between Calculated and Measured Drag
Calculated drag coefficients were compared with
measured drag coefficients for the ice shapes shown
in Figs.8 and 9. With each icing run, the wake
survey was made twice: one made while the probe
traversed away from the shield, and the other made
while the probe traversed back to the shield. Each
measured drag coefficient in Table 2 is the averaged
value of the two measurements at each icing run.

Calculated drag coefficients are also included in
Table 2 for comparisons.

Results in Table 2 are plotted in Figs.10 and 11.
For both airspeeds, the experimental data show
almost constant measured drag coefficients up to

around 12°F and a sharp increase toward near
freezing temperatures as the ice shape changes to

glaze ice. For V.= 150 mph, calculated drag
coefficients agree very well with measured drag

coefficients up to 12°F and begin to rise sharply at
around 18°F. While calculated drag coefficients

reach a peak at around 22°F and begin to decrease,
measured drag coefficients continue to rise and reach

a peak at around 28°F. For V_.=230 mph, however,
the calculated results does a good job of following
the trend in measured values.

Concluding Remarks

The ice shape and drag coefficient results of the
experimental program conducted in the IRT were
compared with the predictions wusing the 2D
LEWICE/IBL code. Experimental data provided
validation data to further calibrate the code with
various icing parameters such as the temperature,
airspeed, and LWC. Good agreement in the ice shape
was shown for the rime ice. The agreement
deteriorated for the glaze ice, although the direction
of the horn growth was generally predicted well.
Deterioration in ice shape prediction for glaze ice is
a typical characteristic shown with the original
LEWICE code. The ice shape comparison results
indicate that the modifications made to the original
LEWICE code in the process of combining it with
the interactive boundary layer method work well.

The results of the drag comparison study show
the ability of the code to predict the sharp drag
increase displayed by the experimental data as the ice
shape changes from rime to glaze. The adjustment
made by extending the roughness beyond the icing
limit on the airfoil allows the calculated drag values
to agree well with experimental data. More studies
are needed to better estimate the extent of icing on
the airfoil surface.

The big strength of the 2D LEWICE/IBL code is
the economy of the computing time. A typical
computing time (CPU time only) to complete a
calculation of 6 or 7 minutes ice accretion and its
aerodynamic characteristics was less than 50 seconds
on a CRAY X-MP.

More comparison work is needed to check the 2D
LEWICE/IBL code for further improvements. The
test points of the repeatability test in the IRT were
reduced from the original test plan due to the loss of
tunnel time. More tests are planned to document the
effects of other icing parameters on the ice shape and
resulting drag. It is also planned to obtain
experimental lift data with iced airfoils for code
validation work.
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Fig.1. Plan View of IRT, Shop, and Control Room.

Table 1. Test Conditions

Arr Total Ice
AOA | Speed | LWC | MVD | Temperature | Accretion

(deg.) | (mph) | (g/m3)| (um) °F) Time

(min.)
4 150 140 20 28 6
4 150 | 1.0 | 20 25 6
4 150 | 1.0 | 20 22 6
4 150 1.0 20 18 6
4 150 1.0 20 12 6
4 150 1.0 20 1 6
4 150 1.0 20 -15 6
4 230 0.55 20 28 7
| 4 230 | 0.55 | 20 25 7
| 4 | 230 | o055 20 22 7
| 4 | 230 [ o0s5] 20 18 7
| 4 230 0.55 20 12 7
4 230 0.55 20 1 7
4 230 | 0.55 | 20 -15 7

»

Fig.2. NACA 0012 Airfoil and Wake Survey Probe.
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Fig.8. Effect of Total Air Temperature on Ice Shape.

AOA=4°, V=150 mph, LWC=1.0g/m3, MVD=20um,
Accretion Time = 6 min.
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Fig.9. Effect of Total Air Temperature on Ice Shape.

AOA=4°, V=230 mph, LWC=0.55g/m3, MVD=20um,
Accretion Time = 7 min.




Table 2. Effect of Total Air Temperature on Drag Coefficient.

Drag Coefficient, Cy

(a) Airspeed=150 mph, LWC=1.0g/m3, MVD=20pum (b) Airspeed=230 mph, LWC=0.55g/m3, MVD=20um
Total Experimental | Calculated Total Experimental | Calculated
Temperature Drag Drag Temperature Drag Drag
©F) Coefficient | Coefficient °F) Coefficient | Coefficient
28 0.0578 0.0346 28 0.0428 0.0470
25 0.0540 0.0372 25 0.0371 0.0294
22 0.0315 0.0392 22 0.0311 0.0202
18 0.0271 0.0351 18 0.0268 0.0195
12 0.0229 0.0217 12 0.0255 0.0195
1 0.0229 0.0209 ' 1 0.0234 0.0195
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Fig.10. Effect of Total Temperature on Drag ( V., =150 mph). Fig.11. Effect of Total Temperature on Drag ( V..=230 mph).
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